If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-180=0
a = 7; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·7·(-180)
Δ = 5040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5040}=\sqrt{144*35}=\sqrt{144}*\sqrt{35}=12\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{35}}{2*7}=\frac{0-12\sqrt{35}}{14} =-\frac{12\sqrt{35}}{14} =-\frac{6\sqrt{35}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{35}}{2*7}=\frac{0+12\sqrt{35}}{14} =\frac{12\sqrt{35}}{14} =\frac{6\sqrt{35}}{7} $
| 29=6x+7 | | 3x-14-10x=-1 | | 6x=2-2 | | 42=0,3x | | -7x-5=-9-5x | | 2x-10+7x=98 | | 17=x=32 | | 3x-12+10=34 | | 1.15x=86.95 | | (2x+5)8x=0 | | 80-x=8x-3 | | 4y+1=7y-5 | | 2x+21=4x5 | | -4x+3=6x+5 | | 14x^2+58x-16=0 | | 5(3x+4)=2(4x-7) | | 15x+20=8x-14 | | 7s-20=85 | | -w+5=10 | | 4x^2+4x=-15 | | 12x=220 | | 6m-20=64 | | 56-11x=21 | | 49y-8=90 | | 8x+1=−7 | | 7x+5=–2x+68 | | 4x-20=(4x-8)/12 | | 2x-18=9x+9 | | 500(t)=-16t^2+175 | | N^2+2n+4=136 | | x°3=2x+4 | | 7z-5=2-11 |